Computational evidence that fast translation speed can increase the probability of cotranslational protein folding
نویسندگان
چکیده
Translation speed can affect the cotranslational folding of nascent peptide. Experimental observations have indicated that slowing down translation rates of codons can increase the probability of protein cotranslational folding. Recently, a kinetic modeling indicates that fast translation can also increase the probability of cotranslational protein folding by avoiding misfolded intermediates. We show that the villin headpiece subdomain HP35 is an ideal model to demonstrate this phenomenon. We studied cotranslational folding of HP35 with different fast translation speeds by all-atom molecular dynamics simulations and found that HP35 can fold along a well-defined pathway that passes the on-pathway intermediate but avoids the misfolded off-pathway intermediate in certain case. This greatly increases the probability of HP35 cotranslational folding and the approximate mean first passage time of folding into native state is about 1.67μs. Since we also considered the space-confined effect of the ribosomal exit tunnel on the cotranslational folding, our simulation results suggested alternative mechanism for the increasing of cotranslational folding probability by fast translation speed.
منابع مشابه
Kinetic modelling indicates that fast-translating codons can coordinate cotranslational protein folding by avoiding misfolded intermediates.
It has been observed for several proteins that slowing down the rate at which individual codons are translated can increase their probability of cotranslational protein folding, while speeding up codon translation can decrease it. Here we investigate whether or not this inverse relationship between translation speed and the cotranslational folding probability is a general phenomenon or if other...
متن کاملFast Protein Translation Can Promote Co- and Posttranslational Folding of Misfolding-Prone Proteins.
Chemical kinetic modeling has previously been used to predict that fast-translating codons can enhance cotranslational protein folding by helping to avoid misfolded intermediates. Consistent with this prediction, protein aggregation in yeast and worms was observed to increase when translation was globally slowed down, possibly due to increased cotranslational misfolding. Observation of similar ...
متن کاملIn vivo translation rates can substantially delay the cotranslational folding of the Escherichia coli cytosolic proteome.
A question of fundamental importance concerning protein folding in vivo is whether the kinetics of translation or the thermodynamics of the ribosome nascent chain (RNC) complex is the major determinant of cotranslational folding behavior. This is because translation rates can reduce the probability of cotranslational folding below that associated with arrested ribosomes, whose behavior is deter...
متن کاملPrediction of variable translation rate effects on cotranslational protein folding.
The concomitant folding of a protein with its synthesis on the ribosome is influenced by a number of different timescales including the translation rate. Here we present a kinetic formalism to describe cotranslational folding and predict the effects of variable translation rates on this process. Our approach, which utilizes equilibrium data from arrested ribosome nascent chain complexes, provid...
متن کاملUnderstanding the influence of codon translation rates on cotranslational protein folding.
Protein domains can fold into stable tertiary structures while they are synthesized by the ribosome in a process known as cotranslational folding. If a protein does not fold cotranslationally, however, it has the opportunity to do so post-translationally, that is, after the nascent chain has been fully synthesized and released from the ribosome. The rate at which a ribosome adds an amino acid e...
متن کامل